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1. Introduction and notation

Recall that an infinite collection A ⊆ [ω]ω is almost disjoint (AD) if any two of its members have finite 
intersection. An AD family is maximal (MAD) if it is not properly contained in any other almost disjoint 
family.

Given an almost disjoint family A, the Mrówka–Isbell space Ψ(A) associated to A is the space ω ∪ A, 
where ω is open and discrete and an open neighborhood basis for A ∈ A is {{A} ∪ (A \ F ) : F ∈ [ω]<ω}. 
It is straightforward to verify that this is a Hausdorff, locally compact, first countable, non compact, 
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zero dimensional topological space, and it is pseudocompact (every R-valued continuous function on X is 
bounded), if and only if A is maximal (see e.g. [17]).

The Vietoris hyperspace of a topological space X is the set

exp(X) = {F ⊆ X : F �= ∅ andF is closed}

endowed with the topology generated by the sets

U− = {F ∈ exp(X) : F ∩ U �= ∅} and

U+ = {F ∈ exp(X) : F ⊆ U},

where U ⊆ X is open.
In [13], J. Ginsburg proved that for a Tychonoff space X, if exp(X) is pseudocompact, then every finite 

power of X is also pseudocompact. He asked whether there is a relation between the pseudocompactness of 
Xω and that of exp(X), and asked whether it is possible to characterize those spaces which have pseudo-
compact hyperspaces.

J. Cao, T. Nogura and A. Tomita [7] provided a partial answer by showing that for every homogeneous 
Tychonoff space X, if exp(X) is pseudocompact, then Xω is pseudocompact. On the other hand, M. Hrušák, 
F. Hernández-Hernández and I. Martínez-Ruiz [17] showed that, in ZFC, there is a subspace of βω containing 
ω such that Xω is pseudocompact but exp(X) is not. This was extended by V. Rodrigues, A. Tomita and Y. 
Ortiz-Castillo [22], who showed that there is a space X such that Xκ is countably compact for every κ < h, 
but exp(X) is still not pseudocompact. They also showed that whenever X is a subspace of βω containing 
ω, if exp(X) is pseudocompact, so are exp(X)ω and Xω.

J. Cao and T. Nogura, in a private conversation, asked whether exp(X) is pseudocompact for some/every 
Mrówka–Isbell space X. The first relevant observation is:

Proposition 1.1 ([17]). Let A be an AD family. Then Ψ(A) is pseudocompact iff Ψ(A)ω is pseudocompact 
iff A is MAD.

In particular, if A is an almost disjoint family and X = Ψ(A), the following implications hold:

exp(X) is pseudocompact =⇒ X is pseudocompact =⇒ Xω is pseudocompact

So Ginsburg’s questions restricted to the class of Mrówka-Isbell spaces becomes the problem of charac-
terizing those MAD families such that the hyperspace of their Mrówka-Isbell space is pseudocompact. To 
study Ginsburg’s question restricted to this class of spaces, the following shorthands will come in handy: if 
A is an almost disjoint family, then we define exp(A) as exp(Ψ(A)) and we call it the hyperspace of A. We 
also say A is pseudocompact iff exp(A) = exp(Ψ(A)) is pseudocompact.

Recall that a family P ⊆ [ω]ω is centered if the intersection of any finite number of members of P is 
infinite. A set A ∈ [ω]ω is a pseudointersection of P if A ⊆∗ P (i.e. A \ P is finite) for every P ∈ P. The 
pseudointersection number p is the smallest cardinality of a centered C ⊆ [ω]ω with no pseudointersection. 
A collection D ⊆ [ω]ω is open dense if for every A ∈ [ω]ω there exists B ∈ D such that B ⊆ A, and if 
for every A ∈ [ω]ω and for every B ∈ D, if A ⊆∗ B then A ∈ D. The distributivity number h is the least 
cardinality of a family of open dense subsets of [ω]ω with empty intersection.

The main result of [17] states:

Theorem 1.2 ([17]).

(1) If p = c, then every MAD family is pseudocompact.
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(2) If h < c, there is a MAD family which is not pseudocompact.

Part (2) of the theorem depends heavily on the base tree theorem of Balcar, Pelant and Simon [1] which 
affirms the existence of a base tree of height h, that is, of a tree T ⊆ [ω]ω of height h ordered by ⊇∗, such 
that every element has c-many immediate successors, each level is a MAD family and such that every infinite 
subset of ω has a subset in the tree. As mentioned in [17], the assumption h < c in (2) can be weakened to 
the existence of a base tree without branches of length c.

In [23], V. Rodrigues and A. Tomita showed that after adding ω1 Cohen reals there is a Cohen indestruc-
tible MAD family of cardinality ω1 whose hyperspace is pseudocompact.

In this article we optimize the above theorem by showing (Theorem 2.4) that the statement that all MAD 
families have pseudocompact hyperspace is equivalent to the assertion MAc(P(ω)/fin).5

The problem of whether there is a pseudocompact MAD family in ZFC was raised in [17] and is still 
open:

Question 1.3. Is there a MAD family A with pseudocompact hyperspace in ZFC?

Here we provide a partial answer to the problem by showing that it is consistent that there is a MAD 
family A of size strictly less than c whose hyperspace is not pseudocompact, so, in particular, there is an 
AD family of size less than c which cannot be extended to a pseudocompact one, i.e. it is consistent that 
pseudocompact MAD families do not exist generically.

Our notation is mostly standard. In particular, ω denotes the set of finite von Neumann ordinals and is 
identified with the natural numbers. The set of free ultrafilters over ω is denoted by ω∗ and is identified 
with the remainder of the Stone-Čech compactification of ω. Given U ∈ ω∗, a topological space X, x ∈ and 
a sequence 〈xn : n ∈ ω〉 of elements of X, we say that x is a U-limit of 〈xn : n ∈ ω〉 if for every neighborhood 
U of x, the set {n ∈ ω : xn ∈ U} belongs to U and we then write U-lim xn = x.

The smallest cardinality of a MAD family is defined as a. It is well known that ω1 ≤ p ≤ h ≤ a ≤ c and 
that all inequalities are consistently strict. See [2] for more on cardinal invariants of the continuum.

2. Equivalence with MAc(P(ω)/ fin)

In this section we shall identify statements equivalent to the assertion “For every MAD family exp(A) is 
pseudocompact”.

The following proposition appears as Proposition 2.1 in [23]:

Proposition 2.1. Let A be an almost disjoint family. Then exp(A) is pseudocompact if and only if every 
sequence 〈an : n ∈ ω〉 ⊆ [ω]<ω \{∅} ⊆ exp(A) of pairwise disjoint sets has an accumulation point in exp(A).

By using this proposition we can get a result similar to Lemma 3.1 in [17].

Lemma 2.2. Let A be an almost disjoint family. Let F = 〈Fn : n ∈ ω〉 be a sequence of pairwise disjoint 
finite nonempty subsets of ω. Given A ⊆ ω, let IA = {n ∈ ω : Fn ∩ A �= ∅} and MA = {n ∈ ω : Fn ⊆ A}. 
Then:

(1) If L is a limit point of the sequence F in exp(A), then L ⊆ A, and

5 If κ is a cardinal and P is a pre-order, MAκ(P ) is the statement “for every collection of ≤ κ dense subsets of P there exists a 
filter G on P which intersects every dense set of the collection”. The boolean algebra P(ω)/ fin can be seen as the set [ω]ω ordered 
by ⊆∗.
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(2) Given L ⊆ A, L is a limit point of F if, and only if for every P ⊆ ω such that ∀A ∈ L A ⊆ P , the set 
{IA : A ∈ L} ∪ {MP } is centered.

Proof. For the first item, notice that if n ∈ ω ∩ L, then {n}− is a neighborhood of L which intersects at 
most one element from the sequence F , so L cannot be a limit point for F .

For the second item, first suppose that L is a limit point of F . Fix arbitrary A0, . . . , Al ∈ L and P as in 
the item. We must show that IA0 ∩ · · · ∩ IAn

∩MP is infinite. Fix k ∈ ω. Notice that L ∪ (P \ k) is open, so 
V = (L ∪ P )+ ∩ ({A0} ∪ A0)− · · · ∩ ({An} ∪ Al)− is a neighborhood of L, so it must have a point Fn with 
n ≥ k. Then Fn ⊆ P and Fn ∩ Ai �= ∅ for each i, that is, n ∈ IA0 ∩ · · · ∩ IAl

∩MP \ k. Since k is arbitrary 
we are done.

Now we prove the converse. Let U0, . . . , Un, V be open sets of Ψ(A) such that L ∈ U−
0 ∩· · ·∩U−

n ∩V +. Let 
P = V ∩ω and, for each i ≤ l, let Ai ∈ L ∩Ui and let ki be such that Ai\ki ⊆ Ui. Then IA0 ∩· · ·∩IAl

∩MP is 
infinite. Since F is a pairwise disjoint sequence, there exists m such that for all n ≥ m, Fn∩max{k0, . . . , kl} =
∅. Let m ≥ n be in IA0 ∩ · · · ∩ IAl

∩MP . Then Fm ∈ U−
0 ∩ · · · ∩ U−

l ∩ V + and the proof is complete. �
A sufficient condition to guarantee the existence of a limit point is given by the following lemma:

Lemma 2.3. Let A be an almost disjoint family, U be a free ultrafilter and let F = 〈Fn : n ∈ ω〉 ⊆
[ω]<ω \ {∅} ⊆ exp(A) be a sequence of pairwise disjoint sets. Then if for every f ∈

∏
n∈ω Fn there exists 

A ∈ A and B ∈ U such that f [B] ⊆ A, then F has a U-limit.

Proof. Let P =
∏

n∈ω Fn. Given f ∈ P , fix Bf ∈ U and Af ∈ A such that f [Bf ] ⊆ Af . Let B = {Af : f ∈ P}
We claim that B = U-limF .

To verify the claim, it suffices to verify the U-limit condition for sub-basic sets, so let U ⊂ Ψ(A) be open.
If B ∈ U−, then there exists f ∈ P with Af ∈ U . Since U is open, Af ⊆∗ U . Then f [Bf ] ⊆∗ U . So 

Bf ⊆∗ {n ∈ ω : f(n) ∈ U} ⊆ {n ∈ ω : Fn ∈ U−}. Since Bf ∈ U and U is a free ultrafilter, it follows that 
{n ∈ ω : Fn ∈ U−} ∈ U .

If B ∈ U+, suppose by contradiction that {n ∈ ω : Fn ∈ U+} /∈ U . Then I = {n ∈ ω : Fn \ U �= ∅} ∈ U . 
Let f ∈ P be such that for each n ∈ I, f(n) ∈ Fn \ U . Then f [I ∩Bf ] ⊆∗ Af and f [I ∩Bf ] \ U is infinite, 
so Af \ U is infinite. On the other hand, since B ∈ U+ we have Af ∈ U , but U is open, so Af ⊆∗ U , a 
contradiction. �

Given a T1 topological space X with no isolated points, the Baire number of X, denoted by n(X), is 
the smallest cardinality of a family of open dense subsets of X with empty intersection. In the following 
theorem, the equivalence between a) and d) with an arbitrary infinite κ in the place of c was presented 
without proof in [1]. For the sake of completeness, we present a proof (in the proof we present, one could 
switch c for any other infinite cardinal).

Theorem 2.4. The following are equivalent:

a) MAc(P(ω)/ fin)
b) For every MAD family A, exp(A) is pseudocompact,
c) h = c and every base tree has a cofinal branch
d) n(ω∗) > c.

Proof. a) → b) Suppose MAc(P(ω)/ fin) holds and fix a MAD family A. Let F = 〈Fn : n ∈ ω〉 ⊆ [ω]<ω \{∅}
be a sequence of pairwise disjoint sets. Let P =

∏
n∈ω Fn. Given f ∈ P , let

Df = {B ∈ [ω]ω : ∃A ∈ A f [B] ⊆ A}.
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It is straightforward to verify that Df is dense in P(ω)/ fin. By MAc(P(ω)/ fin), let U be a filter intersecting 
every member of {Df : f ∈ P}. Then, by Lemma 2.3, F has a U-limit. Now the conclusion follows from 
Proposition 2.1.

b) → c) Negating c), either h < c or there exists a base tree of height c with no cofinal branches. Either 
way, there is a base tree with no branches of cardinality c, so the negation of b) follows from the second 
statement of Theorem 1.2 and from the comments below it.

c) → d) Let (Uα : α < c) be a collection of open dense subsets of ω∗ (where ω∗ is identified with the 
space of free ultrafilters on ω. For each α, let Aα be an infinite almost disjoint family such that A∗ ⊆ Uα

for every A ∈ Aα maximal for this property. It is easy to verify that each Aα is a MAD family. Using h = c

and following the standard construction of a base tree (e.g. [2]), there exists a base tree T of height c such 
that every level Tα of T refines every element of {Aβ : β < α} (that is: given β < α and A ∈ Tα, there exists 
B ∈ Aβ such that A ⊆∗ B). Then T has a cofinal branch T . Extend T to an ultrafilter U . U intersects Tα
for every α < c, so it would also intersect Aα for every α < c. This shows that U ∈

⋂
α<c

Uα.
d) → a) Suppose n(ω∗) > c and let (Bα : α < c) be a collection of dense subsets of P(ω)/ fin. For each 

α < c, let Uα =
⋃
{B∗ : B ∈ Bα}. It is easy to verify Uα is open and dense in ω∗. Let U ∈

⋂
α<c

Uα. Then for 
each α < c there exists B ∈ Bα such that U ∈ B∗, that is, B ∈ U ∩Bα, i.e. U is generic for (Bα : α < c). �

Next we present a model of p < c where all Mrówka-Isbell spaces from MAD families have pseudocompact 
hyperspaces.

Theorem 2.5. It is consistent that p < c and exp(A) is pseudocompact for every MAD family A.

Proof. Suppose V � p = c = ω2 + there exists a Suslin Tree. Let S be a well-pruned Suslin tree and let G
be S generic over V. It is well known that S forces p = ω1 < c (see, for example, [10]). Suppose A is a MAD 
family in V [G].

Claim. There exists a MAD family B ∈ V such that for every B ∈ B there exists A ∈ A such that B ⊆∗ A.

Proof of the claim. Let Å be a name for A and let p ∈ S be such that p � Å is a MAD family. If t ≤ p, let 
At = {A ∈ [ω]ω : t � Ǎ ∈ Å}. Each of these sets is an almost disjoint family. In V, for each t ≤ p let Bt be 
a MAD family containing At.

Since |S| = ω1 < h, there exists B refining {Bt : t ≤ p}, that is, for every B ∈ B and for every t ≤ p, 
there exists A ∈ Bt such that B ⊆∗ A.

We show that B is as intended: given B ∈ B, there exists A ∈ A such that |B∩A| = ω. Since forcing with 
a Suslin trees does not add reals, there exists t ≤ p such that t � A ∈ Å, so A ∈ At. There exists A′ ∈ Bt

such that B ⊆∗ A′. Since A′, A ∈ Bt, it follows that A = A′, which completes the proof of the claim. �
Let F ∈ V[G] be a sequence of pairwise disjoint finite nonempty subsets of ω. Since forcing with S does 

not add reals, F ∈ V. Working in V, since p = c holds, there exists a free ultrafilter U such that for every 
f ∈

∏
n∈ω Fn there is I ∈ U such that f [I] is contained in an element of B.

In V[G], U is still a free ultrafilter and for every f ∈
∏

n∈ω Fn there is I ∈ U such that f [I] is contained 
in an element of A. This implies that every such an f has a U-limit in Ψ(A) and that in the hyperspace, 
U-limF = {U- lim f : f ∈

∏
n∈ω Fn}. �

3. Generic existence of pseudocompact MAD families

In this section we study sufficient conditions for the existence of pseudocompact MAD families. We give 
sufficient conditions for the existence of both large and small pseudocompact MAD families. Following [14]
we shall say that pseudocompact MAD families exist generically if every AD family of size less than c can 
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be extended to a pseudocompact one. Of course, it trivially follows from the results of the previous section 
that pseudocompact MAD families exist generically if the conditions of Theorem 2.4 are satisfied, i.e. if 
h = c and every base tree has a cofinal branch.

On the other hand, this is not equivalent to the generic existence of pseudocompact MAD families which 
we shall show next. Recall [6] that given an ultrafilter U the pseudointersection number p(U) of U is defined 
as the minimal size of a subfamily X of U without a pseudointersection in U , i.e. p(U) > ω if and only if U is 
a P -point, and p(U) = c if and only if U is a simple Pc-point i.e. an ultrafilter generated by a ⊆∗-decreasing 
chain of length c.

Theorem 3.1. If A is a MAD family, U an ultrafilter and |A| < p(U) then A is pseudocompact.

Proof. Let U be given. Fix a MAD family A such that |A| < p(U). By Lemma 2.3, and Proposition 2.1, it 
is sufficient to verify that for every injective sequence f : ω → ω there exists B ∈ U and A ∈ A such that 
f [B] ⊆ A.

Suppose this is not the case. Then there exists f : ω → ω such that for all A ∈ A and B ∈ U , f [B] \ A
is infinite. First, notice that given A ∈ A, there exists BA ∈ U such that f [BA] ∩ A is empty: the sets 
{n ∈ ω : f(n) /∈ A} and {n ∈ ω : f(n) ∈ A} form a partition of ω, so one of them is in U . But the second is 
not in U by hypothesis. Let BA be the first set.

Now let B be a pseudointersection of {BA : A ∈ A} in U . It follows that f [B] ∩ A is finite for every 
A ∈ A, contradicting the maximality of A. �

Note that the same argument shows that:

Corollary 3.2. If there is an ultrafilter U such that p(U) = c then pseudocompact MAD families exist gener-
ically.

Next we will construct a model where the assumptions of Theorem 3.1 hold, i.e. a = ω1 and there is an 
ultrafilter U such that p (U) = ω2. We will use the method of matrix iterations, which was introduced by 
Blass and Shelah in [3] and further developed by Brendle and Fischer in [5]. We will provide a quick review 
of this method, but it would be helpful if the reader had familiarity with [5]. To learn more about matrix 
iterations, the reader may consult [20,12,11,4,9,8].

The following forcing was introduced by Hechler [15] for adding generically a MAD family (see also [5]). 
Let γ ≤ ω1. Define Hγ as the set of all functions p such that there are Fp ∈ [γ]<ω and np ∈ ω such that 
p : Fp × np −→ 2.

Given p, q ∈ Hγ , define p ≤ q if the following holds:

(1) q ⊆ p (hence Fq ⊆ Fp and nq ≤ np).
(2) For every α, β ∈ Fq (with α �= β) and i ∈ [nq, np), if p (α, i) = 1, then p (β, i) = 0.

Assume G ⊆ Hγ is a generic filter. For every α < γ, define

AG
α = {i | p ∈ G (p (α, i) = 1)} .

Define the generic AD family as AG
γ =

{
AG

α | α < γ
}
. The following lemma is well known and easy to see:

Lemma 3.3. Let γ ≤ ω1 and G ⊆ Hγ a generic filter.

(1) If α < γ, then AG
α is infinite.

(2) AG
γ is an AD family.
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(3) If δ < γ, then Hδ is a regular suborder of Hγ.
(4) If γ = ω1, then AG

ω1
is a MAD family.

More properties and preservation results may be consulted in [19].
Let F be a filter on ω. Define the Mathias forcing of F (denoted as M(F)) [18] as the set of all p = (sp, Fp)

such that sp ∈ [ω]<ω and Fp ∈ F , ordered by p = (sp, Fp) ≤ q = (sq, Fq) if sq ⊆ sp, Fp ⊆ Fq and sp\sq ⊆ Fq.
If G ⊆ M (F) is a generic filter, the generic real of M (F) is defined as

rG =
⋃

{sp | ∃p = (sp, Fp) ∈ G} .

It is easy to see that rG is a pseudointersection of F .
The following notion was introduced in [5]:
Let M ⊆ N be transitive models of ZFC (we may assume that N is a forcing extension of M). Let 

A = {Aα | α ∈ γ} be an AD family in M and B ∈ N an infinite subset of ω. We say that �M,N
A,B holds, if 

for all h : ω × [γ]<ω → ω such that h ∈ M , for all m ∈ ω and for all F ∈ [γ]<ω, there exists n ≥ m such 
that [n, h (n, F )) \

⋃
α∈F Aα ⊆ B. It is easy to see that if �M,N

A,B hold, then B ∈ I (A)+.
The following is immediate from the definition:

Lemma 3.4. Let M ⊆ N be transitive models of ZFC, A = {Aα | α ∈ γ} ∈ M an AD family and B ∈ N

such that �M,N
A,B holds. If X ∈ I (A)+ ∩M then B ∩X is infinite (in N).

The next lemma is Lemma 4 of [5]:

Lemma 3.5 ([5]). Let γ + 1 ≤ ω1 and Gγ+1 ⊆ Hγ+1 a generic filter. Define Gγ = Hγ ∩ Gγ+1. Then 

�V [Gγ ],V [Gγ+1]
Aγ ,Aγ

holds.

The following is a deep result of Brendle and Fischer (Crucial Lemma 7 of [5]):

Proposition 3.6 (Brendle, Fischer [5]). Let M ⊆ N be transitive models of ZFC, A = {Aα | α ∈ γ} ∈ M an 
AD family and B ∈ N such that �M,N

A,B holds. Let U ∈ M be an ultrafilter. There is an ultrafilter W ∈ N

such that the following holds:

(1) U ⊆ W (hence M (U) ⊆ M (W)).
(2) If L ⊆ M (U) is a maximal antichain with L ∈ M , then L is also a maximal antichain of M (W).
(3) If GW ⊆ M (W) is an (N,M (W))-generic filter, then GU = GW ∩ M (U) is an (M,M (U))-generic 

filter.
(4) rGW = rGU (in particular, rGW ∈ M [GU ], but this does not imply that an M(U)-generic real is also a 

M(W)-generic real).
(5) �M [GU ], N [GW ]

A,B holds.

Note that points 3 and 4 follow from points 1 and 2. It is important to note that in general (in N) M (U)
will not be a regular suborder of M (W) (except in the trivial case where U = W). This is because in point 
2, we only have the results for the maximal antichains that are in M , but it may fail for those that are in 
N .

Let κ and λ be two cardinals. We will say that

(
〈Pα,β | α ≤ κ, β ≤ λ〉 , 〈Q̇α,β | α ≤ κ, β < λ〉

)

is a standard matrix iteration if the following holds for every α ≤ κ, β ≤ λ:
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(1) If β < λ, then Q̇α,β is a Pα,β-name for a partial order with the countable chain condition.
(2) If β < λ, then Pα,β+1 = Pα,β ∗ Q̇α,β .
(3) If ξ < β, then Pα,ξ is a regular suborder of Pα,β.
(4) If β is limit, then Pα,β is the finite support iteration of 〈Pα,ξ | ξ < β〉.
(5) If η < α, then Pη,β is a regular suborder of Pα,β.
(6) If α is limit, then Pα,0 is the finite support iteration of 〈Pη,0 | η < α〉.
(7) If p ∈ Pκ,β , then there is γ < κ such that p ∈ Pγ,β .
(8) If ḟ is a Pκ,β-name for a real, then there is γ < κ such that ḟ is a Pγ,β-name.

In the above situation, given α ≤ κ, β ≤ λ, we denote by Vαβ the extension of V by forcing with Pα,β.
We now define 

(
〈Pα,β | α ≤ ω1, β ≤ ω2〉 , 〈Q̇α,β | α ≤ ω1, β < ω2〉

)
such that for every α ≤ ω1 and β ≤ ω2

we have the following properties:

(1) Pα0 = Hα.
(2) Let Aα = {Aξ | ξ < α} be the AD family added by Hα.
(3) For every β < ω2, there is a sequence 〈Uγβ | γ ≤ ω1〉 with the following properties:

(a) Uγβ ∈ Vγβ and it is an ultrafilter in such model.
(b) For every γ < δ ≤ ω1 the following holds:

(i) Uγβ ⊆ Uδβ .
(ii) If L ⊆ M (Uγβ) is a maximal antichain with L ∈ Vγβ , then L is also a maximal antichain of 

M(Uδβ).
(iii) If �Vγβ ,V(γ+1)β

Aγ ,Aγ
and H is a M 

(
U(γ+1)β

)
-generic filter over V(γ+1)β, then �Vγβ [H],V(γ+1)β [H]

Aγ ,Aγ
.

(4) If β < ω2, then Pα,β � “Q̇α,β = Ṁ (Uαβ) ” and Pα,β+1 = Pα,β ∗ Ṁ (Uαβ).
(5) If β < ω2 and rβ is the M (Uω1β)-generic real over Vω1β , then rβ ∈ U0(β+1).
(6) If β < ω2 is a limit ordinal, then {rη | η < β} ⊆ U0β .

By the construction, it follows that {rβ | β < ω2} is a ⊆∗-decreasing sequence (this is why point 6 makes 
sense). The main point is, of course, that the just defined

(
〈Pα,β | α ≤ ω1, β ≤ ω2〉 , 〈Q̇α,β | α ≤ ω1, β < ω2〉

)

is a standard matrix iteration. This follows by the same arguments as in [3] or [5].
There is a subtle point that we would like to clarify in (5) and (6) above. Let β < ω2, in point (5) we 

demand that the (Vω1β , M(Uω1β
))-generic real rβ is in U0(β+1). In particular, we need that rβ belongs to 

V0(β+1). At first glance, this might seem impossible since (in principle) rβ is not an M(U0β)-name. However, 
this is easily fixed as follows: we simply require that U0(β+1) contains the generic real added by M(U0β), 
which we will denote by r0β . By point 4 of Proposition 3.6, we get that rβ and r0β are equal (and in 
particular, rβ belongs to U0(β+1)). A similar remark applies to point (6). The same argument was used in 
[3]. We leave the rest of the details to the reader.

We can now prove the following:

Theorem 3.7. There is a model of ZFC in which a = ω1 and there is an ultrafilter W such that p (W) = c =
ω2.
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Proof. We start with a model V of the Continuum Hypothesis. Let G ⊆ Pω1,ω2 be a generic filter (where 
Pω1,ω2 is the forcing described above). We will show that V [G] is the model we are looking for. A straight-
forward argument shows that V [G] |= c = ω2.

We argue in V [G]. Note that R = {rβ | β < ω2} is a decreasing tower, so it is centered. Let W be the 
filter generated by R. It is easy to see that W is in fact an ultrafilter (this is because rβ is a M (Uω1β)-generic 
real, for more details, the reader may consult [3]). Furthermore, since W is generated by a tower of length 
ω2, it follows that p (U) = ω2.

It remains to be proved that a = ω1 holds in V [G]. This is the same argument as the one used in section 
4 of [5]. We include the argument for completeness. We will prove that Aω1 = {Aα | α < ω1} is a MAD
family in V [G]. We start with the following:

Claim. Let α < ω1 and β ≤ ω2. Then �Vαβ ,V(α+1)β
Aα, Aα

holds.

Fix α < ω1, we prove the claim by induction on β. The case β = 0 follows by Lemma 3.5. If the claim is 
true for β < ω2, then it is also true for β + 1 by point 3(b)iii in the definition of our iteration. Finally, let 
β be a limit ordinal and assume that the lemma is true for every ordinal less than β. If β has uncountable 
cofinality, then there is nothing to prove. For every F ∈ [α]<ω, there is η < β such that hF ∈ Vαη). If β has 
countable cofinality, the claim follows by the Lemma 12 point 1 of [5]). This proves the claim.

Claim. Aω1 is a MAD family in V [G].

Let X ∈ I (Aω1)
+ (in V [G]). Since Pω1,ω2 is a finite support iteration of the c.c.c. partial orders 〈Pω1,β |

β < ω2〉, there is β < ω2 such that X ∈ Vω1β . Furthermore, since we are using a standard matrix iteration 

and X is a real, there is α < ω1 such that X ∈ Vαβ . Since �Vαβ ,V(α+1)β
Aα, Aα

holds and X ∈ I (Aα)+, by 
Lemma 3.4, we have that Aα ∩X is infinite. This finishes the proof. �
4. Non-pseudocompact MAD families

Here we prove that consistently there is a MAD family A of size < c which is not pseudocompact. This, 
of course, trivially provides a model where pseudocompact MAD families do not exist generically. The 
generic existence expresses the fact that a “naïve” construction of an object with the desired properties 
can be carried out, meaning that we line up all possible requirements (necessarily of length c) and try to 
fulfill them one by one without doing anything else to keep the recursion artificially alive. In this sense, 
Theorem 4.2 points out that if there is a pseudocompact MAD family in ZFC, its construction cannot be 
too simple and some further sophistication is required.

The example we construct will be a MAD family over the countably infinite set � = {(n, m) ∈ ω × ω :
m ≤ n}. The elements of A will be graphs of partial functions. The result easily follows from the following:

Theorem 4.1. It is consistent with c > ω2 that there is a MAD family A of size ω2 on � consisting of partial 
functions below the diagonal, and there are MAD families {Aα : α < ω1} on ω, such that

(1) ∀s ∈ A ∃α < ω1 dom(s) ∈ Aα,
(2) s �= t ∈ A ⇒ dom(s) �= dom(t), and
(3) for every family F of ω1-many partial functions below the diagonal there is a total function below the 

diagonal almost disjoint from all elements of F .

We shall postpone the proof of the theorem and first show that it suffices to prove the desired result.
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Theorem 4.2. It is relatively consistent with ZFC that there is a non-pseudocompact MAD family A of size 
< c.

Proof. Assume that c > ω2 and there exist A and (Aα : α < ω1) as in Theorem 4.1. We shall show that 
exp(Ψ(A)) is not pseudocompact.

Let F = 〈Fn : n ∈ ω〉 ⊆ exp(Ψ(A)) be given by Fn = {(n, m) : m ≤ n}. We claim that F has no 
accumulation point in exp(Ψ(A)). Suppose L is such an accumulation point. Then, since F is a sequence of 
pairwise disjoint finite subsets of �, L ⊆ A.

If |L| < ω2, there exists a total function f below the diagonal which is almost disjoint from every element 
of L. Then L ∈ (Ψ(A) \ cl f)+ but Fn /∈ (Ψ(A) \ cl f)+ for every n ∈ ω, a contradiction.

Now suppose |L| = ω2. There exists α < ω1 such that there exists two distinct s, t ∈ A such that 
dom s, dom t ∈ Aα. Since s, t are distinct, it follows that dom(s) �= dom(t), and since Aα is an almost 
disjoint family, dom s ∩ dom t ⊆ k for some k ∈ ω. Then

L ∈ ({s} ∪ {s \ {(n,m) : m ≤ n < k}})− ∩ ({t} ∪ {t \ {(n,m) : m ≤ n < k}})−,

but no element of the sequence F is a member of the latter open set. �
Let A be an AD family. For the convenience of the reader we repeat the definition of the Mathias forcing 

M(A) associated with A. The base set is the collection of all p = (sp, Fp) such that

(1) there is np ∈ ω such that sp : np −→ 2, and
(2) Fp ∈ [A]<ω,

ordered by p = (sp, Fp) ≤ q = (sq, Fq) if

(1) sq ⊆ sp (hence nq ≤ np), Fq ⊆ Fp, and
(2) if B ∈ Fq, then B ∩ s−1

p (1) ⊆ nq.

Given p = (sp, Fp) ∈ M (A), we call sp the stem of p and Fp the side condition of p. The length 
of p is len (p) = np. If G ⊆ M (A) is a generic filter, the generic real of M (A) is defined as Agen =⋃
{i | ∃ (s, F ) ∈ G (s (i) = 1)}. The following lemma is well-known and easy to prove:

Lemma 4.3. Let A be an AD family, G ⊆ M (A) a generic filter and Agen the generic real.

(1) Agen is an infinite subset of ω.
(2) Agen is almost disjoint from every element of A.
(3) For every X ∈ [ω]ω ∩ V , if X ∈ I (A)+, then Agen ∩X is infinite.

By Fun we denote the set of all functions f : ω −→ ω such that f ⊆ �. Define PFun as the set of all 
functions g such that there is A ∈ [ω]ω for which g : A −→ ω and g ⊆ �. Note that if f, g ∈ PFun then f
and g are almost disjoint if and only if the set {n ∈ dom (f) ∩ dom (g) | f (n) = g (n)} is finite.

Definition 4.4. Define ie as the smallest size of a family F ⊆ PFun such that for every g ∈ Fun there is 
f ∈ F such that |f ∩ g| = ω.

The cardinal invariant ie is closely related (though not equal) to the invariant cov∗(EDfin) defined in [16]. 
If X ∈ [ω]ω and n ∈ ω, we let X(n) be the n-th element of X.
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Definition 4.5. Let X ∈ [ω]ω and B ⊆ PFun. Define the forcing E� (B, X) as the set of all p = (sp, np, Fp)
with the following properties:

(1) np ∈ ω, Fp ∈ [B]<ω.
(2) sp : X ∩ np −→ ω and sp ⊆ �.
(3) 2 |Fp| ≤ np.

Let p = (sp, np, Fp), q = (sq, nq, Fq) ∈ E� (B), we define p ≤ q if the following conditions hold:

(1) nq ≤ np, Fq ⊆ Fp and sq ⊆ sp.
(2) If f ∈ Fq and i ∈ dom f ∩ (X ∩ (np \ nq)), then sp (i) �= f (i).

Given p = (sp, np, Fp) ∈ E� (B, X), we call sp the stem of p and Fp the side condition of p. Define the 
length of p as len (p) = np. By E� we will denote E� (Fun, ω). If G ⊆ E� (B, X) is a generic filter, the 
generic real of E� (B, X) is defined as fgen =

⋃
{s | ∃ (s, n, F ) ∈ G}. The analogue of Lemma 4.3 is the 

following:

Lemma 4.6. Let X ∈ [ω]ω, B ⊆ PFun and fgen the generic real of E� (B, X).

(1) fgen : X −→ ω and fgen ⊆ �.
(2) fgen is almost disjoint from every element of B.
(3) If g ∈ PFun∩V is such that dom(g) ⊆ X and g ∈ I (B)+ (where I (B) is the ideal generated by B), 

then fgen ∩ g is infinite.

Let P be a partial order. Recall that a set L ⊆ P is linked if every p, q ∈ L are compatible. P is σ-linked 
if P is the union of countably many linked sets. The following establishes that E� (B, X) is σ-linked:

Lemma 4.7. Let X ∈ [ω]ω and B ⊆ Fun. Let p = (sp, np, Fp), q = (sq, nq, Fq) ∈ E� (B, X). If sp = sq and 
4 |Fp| , 4 |Fq| ≤ np then r = (sp, np, Fp ∪ Fq) extends both p and q.

Proof. Let p = (sp, np, Fp), q = (sq, nq, Fq) ∈ E� (B, X) with s = sp = sq. We first find a finite partial 
function t ⊆ � with the following properties:

(1) s ⊆ t.
(2) For every f ∈ Fp ∪ Fq and i ∈ dom (t) \ dom (s), we have that t (i) �= f (i).
(3) |t| ≥ 2 |Fp ∪ Fq|.

We can find such t since 4 |Fp| , 4 |Fq| ≤ np. It follows that r = (t,dom (t) , Fp ∪ Fq) is an extension of 
both p and q. �
Lemma 4.8. E� (B, X) is σ-linked.

Proof. For every n ∈ ω and s : X|n −→ ω with s ⊆ �, define

L (s, n) = {q | ∃p ≤ q p = (sp, np, Fp) np = n, sp = s and 4 |Fp| ≤ np} .

Clearly each L (s, n) is linked by the previous lemma and

E� (B, X) =
⋃

{L (s, n) : n ∈ ω, s ⊆ �, s ∈ ωX|n}. �
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The following result was inspired by Lemma 5.1 of A. Miller’s [21]:

Proposition 4.9. Let n ∈ ω, s : n −→ ω with s ⊆ �. Let D ⊆ E� be an open dense set. There is an antichain 
Z ∈ [D]<ω such that for every p = (s, n, Fp) ∈ E�, there is q ∈ Z such that p and q are compatible.

Proof. Let A = {rm | m ∈ ω} ⊆ D be a maximal antichain (note that A is countable since E� is σ-linked 
and therefore c.c.c.), let k = n

2 in case n is even and k = n−1
2 in case n is odd.

Assume the proposition is false, so for every m ∈ ω, there is pm = (s, n, Fm) ∈ E� such that pm ⊥ ri
for each i ≤ m. As |Fm| ≤ k we can assume that each Fm has size k, let Fm = {fm

i }i<k. We may view 
B = {Fm | m ∈ ω} as a subset of Funk. Since Funk is a compact space, we can find an accumulation point 
F = {gi}i<k of B. Let p = (s, n, F ), since A is a maximal antichain, there is j ∈ ω such that p and rj are 
compatible. Let q = (t, l, G) be a common extension of both of them. Since F is an accumulation point of 
B, there is m > l, j such that fm

i � l = gi � l for every i < k. Let pm = (t, l, Fm) and note that pm ≤ pm. It 
follows that pm and q are compatible, in particular, pm and q are compatible, which implies that pm and 
rj are compatible, which is a contradiction. �

For the rest of the section, we fix sets {Dγ | γ ∈ ω1}, H, E and a function R with the following properties:

(1) {H,E} ∪ {Dγ | γ ∈ ω1} is a partition of ω2.
(2) For every γ ∈ ω1, we have that |Dγ | = |H| = |E| = ω2.
(3) R :

⋃
γ∈ω1

Dγ −→ H is a bijective function such that α < R (α) for every α ∈
⋃

γ∈ω1

Dγ .

Then we define a finite support iteration 〈Pα, Q̇α | α ≤ ω2〉 as follows:

(1) If α ∈ E, then Pα � “Q̇α = E�”.
(2) For every γ ∈ ω1 and ξ ∈ Dγ , let Ȧξ

γ be a name for the (M(Aξ
γ), Vξ)-generic real (where Aξ

γ = {Ȧη
γ |

η ∈ ξ ∩Dγ} and Vξ is the extension by Pξ).
(3) If α ∈ Dγ (with γ ∈ ω1), then Pα � “Q̇α = M(Aα

γ )”.
(4) Given ξ ∈ H, let γ ∈ ω1 and β ∈ Dγ such that ξ = R (β), let ḟξ be a name for the (E�

(
Bξ, A

β
γ

)
, Vξ)-

generic real (where Bξ = {ḟη | η ∈ ξ ∩H}).
(5) If α ∈ H, with (R (β) = α and β ∈ Dγ) then Pα � “Q̇α = E�

(
Bα, A

β
γ

)
”.

If p ∈ Pα and ẋ is a Pα-name for a condition of Q̇α, we denote by p
ẋ the condition r ∈ Pα+1 such that 
r � α = p and r (α) = ẋ.

We will need to develop some combinatorial tools for our forcing in order to prove the main result. Given 
α ≤ ω2, we say that a condition p ∈ Pα is pure if there is n ∈ ω such that for every ξ ∈ dom (p), the 
following holds:

(1) If ξ ∈ Dγ (for some γ ∈ ω1), then there is sξ ∈ 2n and Jξ ∈ [Dγ ∩ ξ]<ω, Jξ ⊆ dom (p) such that 
p (ξ) = (sξ, {Ȧη

γ | η ∈ Jξ}).
(2) If ξ ∈ H and β is such that R (β) = ξ, then β ∈ dom (p).
(3) If ξ ∈ H, (let β such that R (β) = ξ), then there is zξ : s−1

β (1) −→ ω with zξ ⊆ � and Jξ ∈ [H ∩ ξ]<ω, 
Jξ ⊆ dom (p) such that p (ξ) = (zξ, n, {ḟη | η ∈ Jξ}) and 4 |Jξ| ≤ n (where sβ is defined as in point 1).

(4) If ξ ∈ E, then there is mξ ∈ ω, zξ : mξ −→ ω with zξ ⊆ � and J̇ such that p (ξ) = (zξ, mξ, J̇) and there is 
kξ such that 4kξ ≤ mξ and Pξ-names ρ0, . . . , ρk for functions such that J̇ = {(ρ0, 1Pξ

), . . . , (ρkξ−1, 1Pξ
)}

Given a pure condition p, len(p) denotes the size of the first coordinate of p.
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In the above definition, recall that Ȧξ
γ is the name for the (M(Aξ

γ), Vξ)-generic real and ḟξ is the name 
for the (E� (Bξ) , Vξ)-generic real. An important difference between points 3 and 4 is that in point 4 we 
may have mξ �= n. We call n the height of p. One of the purposes of pure conditions is to avoid (as much 
as possible) the use of names and use real objects.

Lemma 4.10. Pure conditions are dense in Pα.

Proof. We prove the lemma by induction on α. The cases where α = 0 or α is limit are straightforward, so 
we focus on the successor case. Assume the lemma is true for α, we will prove it is also true for α + 1. Let 
p ∈ Pα+1, we may assume that α ∈ dom (p).

Case. α ∈ E.

First, we find p1 ≤ p � α such that there are mα ∈ ω, zα : mα −→ ω with zα ⊆ � and L̇ such 
that p1 � “p (α) = (zα, mα, L̇)”. By extending p and p1, we may even assume that p1 � “4 

∣∣L̇∣∣ ≤ mα”. 
So we may find p2 ≤ p1, kξ ≤ mξ

4 and names ρ0, . . . , ρkξ−1 such that p2 � L̇ = {ρ0, . . . , ρkξ−1}. Let 
J̇ = {(ρ0, 1Pξ

), . . . , (ρkξ−1, 1Pξ
)}. By the inductive hypothesis, let q ≤ p2 be a pure condition. Define 

q ∈ Pα+1 such that the following holds:

(1) q � α = q.
(2) q (α) = (zα, mα, J̇).

It is easy to see that q is a pure extension of p.

Case. α ∈ Dγ (for some γ ∈ ω1).

First, we find p1 ≤ p � α such that there are m ∈ ω, s ∈ 2m and Jα ∈ [Dα ∩ α]<ω such that p1 � “p (α) =
(s, {Ȧη

γ | η ∈ Jα})”, we may assume that Jα ⊆ dom (p1). By the inductive hypothesis, let q ≤ p1 be a pure 
condition, let n witnessing that q is pure, without lost of generality, we may assume that m < n. Let sα ∈ 2n
such that sα � m = s and sα (i) = 0 for every i ∈ [m, n). Define q ∈ Pα+1 such that the following holds:

(1) q � α = q.
(2) q (α) = (sα, {Ȧη

γ | η ∈ Jα}).

It is easy to see that q is a pure extension of p.

Case. α ∈ H.

First, we find p1 ≤ p � α such that there are m ∈ ω, s : m −→ ω with s ⊆ � and Jα ∈ [H ∩ α]<ω such 
that p1 � “p (α) = (s, m, {ḟη | η ∈ Jα})”, we may also assume that 4 |Jα| < m and that Jα ⊆ dom (p1). 
By the inductive hypothesis, let q ≤ p1 be a pure condition, let n witnessing that q is pure, without lost of 
generality, we may assume that m < n and Jα ⊆ dom (q). Let zα : n −→ ω such that zα ⊆ �, zα � m = s

and zα (i) �= zξ (i) for every i ∈ [m, n) and ξ ∈ Jα. Define q ∈ Pα+1 such that the following holds:

(1) q � α = q.
(2) q (α) = (zα, n, {ḟη | η ∈ Jα}).

It is easy to see that q is a pure extension of p. �
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Lemma 4.11. Let α ≤ ω2, p ∈ Pα a pure condition and m ∈ ω. There is q ∈ Pα with the following properties:

(1) q ≤ p.
(2) q is pure.
(3) If β ∈ dom (q) then m ≤ len (q (β)).

Proof. We prove the lemma by induction on α. The cases where α = 0 or α is limit are straightforward, so 
we focus on the successor case. Assume the lemma is true for α, we will prove it is also true for α + 1. Let 
p ∈ Pα+1, we may assume that α ∈ dom (p).

Case. α ∈ E.

Suppose p (α) = (zα, mα, J̇). In case that m ≤ mα, we apply the inductive hypothesis to p � α and we 
are done. Assume that mα < m. By the inductive hypothesis, we may find q ≤ p � α such that the following 
holds:

(1) q is pure.
(2) If β ∈ dom (q) then len q(β) ≥ m.
(3) For every j < kξ there is wj : m −→ ω such that q � “ρj � m = wj”.

We now define s : m −→ ω, with s ⊆ � such that zα ⊆ s and s (i) �= wj (i) for every i ∈ (mα, m] and 
j < n. It is clear that q
(s, m, J̇) has the desired properties.

Case. α ∈ Dγ (for some γ ∈ ω1).

Suppose p (α) = (sα, {Ȧη
γ : η ∈ J̇α}) and n is such that sα : n −→ 2. By the inductive hypothesis, we 

may find q ≤ p � α such that the following holds:

(1) q is pure.
(2) If β ∈ dom (p) then len q(β) ≥ max{m, n}.

Let k be the height of q. We now define z : k −→ 2 such that sα ⊆ z and z (i) = 0 for every i ∈ [n, k). It 
is clear that q
(z, J̇α) has the desired properties.

Case. α ∈ H.

Similar to the previous cases. �
Definition 4.12. Let α ≤ ω2 and p ∈ Pα a pure condition. We say that p has the descending condition if for 
every β1, β2 ∈ dom (p) ∩ E, if β1 < β2, then len (p (β1)) ≥ len (p (β2)).

Using the previous lemma and induction, we get the following:

Lemma 4.13. For every α ≤ ω2, the pure conditions with the descending condition are dense.

Proof. We prove the lemma by induction on α. The cases where α = 0 or α is limit are straightforward, so 
we focus on the successor case. Assume the lemma is true for α, we will prove it is also true for α + 1. Let 
p ∈ Pα+1 be a pure condition, we may assume that α ∈ dom (p). In case α /∈ E, there is nothing to do, so 
assume that α ∈ E.
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Let p (α) =
(
s, n, J̇

)
, by the inductive hypothesis and Lemma 4.11, we can find q ∈ Pα such that 

q ≤ p � α, q is pure with the descending condition and all the stems in q have size larger than n. It is clear 
that q


(
s, n, J̇

)
is the condition we are looking for. �

Although pure conditions are nice to work with, we will need to deal with non-pure conditions for some 
arguments. We will develop the tools needed in order to do this. First, we recall a standard forcing lemma 
that will often be used implicitly (for a proof, see Lemma 1.19 in the first chapter of [24]):

Lemma 4.14. Let P be a partial order, A = {pα | α ∈ κ} ⊆ P a maximal antichain and {ẋα | α ∈ κ} be a 
set of P -names. There is a P -name ẏ such that pα � “ẏ = ẋα” for every α ∈ κ.

Given A ∈ [E]<ω, a function K : A −→ ω<ω is said to be suitable if K (α) ⊆ � for every α ∈ A. We say 
that a condition q ∈ Pω2 follows a suitable K if the following holds:

(1) A ⊆ dom (q).
(2) If α ∈ A, then q � α � “q (α) =

(
K (α) , |K (α)| , Ḟ

)
” (for some Ḟ ).

Definition 4.15. Let A ∈ [E]<ω. We say that p ∈ Pα has the A-descending condition if the following holds:

(1) For every β1, β2 ∈ (dom (p) \A) ∩ E, if β1 < β2, then p � β2 � “ len (p (β1)) ≥ len (p (β2)) ”.
(2) For every β1, β2 ∈ dom (p) ∩H, if β1 < β2, then p � β2 � “ len (p (β1)) ≥ len (p (β2)) ”.
(3) For every γ ∈ ω1 and for every β1, β2 ∈ dom (p) ∩ Dγ , if β1 < β2, then p � β2 � “ len (p (β1)) ≥

len (p (β2)) ”.
(4) If β = min (dom (p)), then there is s ∈ ω<ω such that s is the stem of p (β) (i.e., the stem of p (β) is a real 

object, not just a name) and for every η ∈ dom (p) \A, we have that p � η � “ len (p (β)) ≥ len (p (η)) ”.

Notice that this new notion does not clash with our previous terminology, since pure conditions with 
the descending condition (essentially) satisfy the ∅-descending condition. We now introduce the following 
notions:

Definition 4.16. Let α ∈ ω2, A ∈ [E ∩ α]<ω and K : A −→ ω<ω be suitable. We define PK
α as the set of all 

p ∈ Pα such that the following conditions hold:

(1) p follows K.
(2) p satisfies the A-descending condition.
(3) For every β ∈ dom (p) ∩ (H ∪ E), if p (β) =

(
ṡ, ṁ, Ḟ

)
, then p � β � “4 

∣∣Ḟ ∣∣ ≤ ṁ”.

The following result is similar to Lemma 4.11:

Lemma 4.17. Let α ≤ ω2, A ∈ [E ∩ α]<ω
, K : A −→ ω<ω be suitable, p ∈ PK

α and m ∈ ω. There is q such 
that the following holds:

(1) q ∈ PK
α .

(2) dom (q) = dom (p).
(3) q ≤ p.
(4) If β ∈ A, then q (β) = p (β).
(5) If β ∈ dom (q) \A then q � β � len (q (β)) = max {m, len (p (β))}.
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Proof. Note that the last point already implies that q satisfies the A-descending condition. We proceed by 
induction, the cases α = 0 and α is limit are immediate. Assume the lemma is true for α, we will now prove 
it for α + 1. We may assume that α ∈ dom (p).

Case. α /∈ H ∪E.

Note that in particular, α /∈ A. Let p � α � p (α) =
(
ṡ, Ḟ

)
, by the inductive hypothesis, there is q ≤ p � α

as in the lemma. Let k̇ be a Pα-name for a natural number, such that q � “ṡ : k̇ −→ 2”. Let ż be a Pα-name 
such that q forces the following:

(1) dom (ż) = max{m, k̇}.
(2) ṡ ⊆ ż.
(3) If i ∈ dom (ż) \ dom (ṡ), then ż (i) = 0.

It is clear that q
(ż, Ḟ ) is the condition we were looking for.

Case. α ∈ H.

Let α ∈ H, γ ∈ ω1 and β ∈ Dγ such that R (β) = α. Let p ∈ PK
α+1 with α ∈ dom (p). By the 

inductive hypothesis, we may assume that p � α satisfy the properties in the conclusion of the lemma. Let 
p � α � p (α) = (ṡ, k̇, Ḟ ) and find ṅ a Pα-name for max{k̇, m}. Let ż be a Pα-name for a partial function 
forced to have the following properties:

(1) ż ⊆ �.
(2) ṡ ⊆ ż.
(3) dom (ż) = Ȧβ

γ ∩ ṅ

(4) for all i ∈ dom (ż), if i /∈ dom (ṡ), then ż (i) = min
{
j | ∀g ∈ Ḟ (g (i) �= j)

}
.

It is clear that p � α

(
ż, ṅ, Ḟ

)
has the desired properties.

Case. α ∈ E and α /∈ A.

Similar to the previous case.

Case. α ∈ E and α ∈ A.

Let A1 = A \ {α} and K1 = K � A1. By the inductive hypothesis (applied to p � α and K1) let q ≤ p � α
as in the lemma. It is easy to see that q
p (α) has the desired properties. �

We will need the following result, which is the generalization of Proposition 4.9 for the iteration:

Lemma 4.18. Let α ≤ ω2, D ⊆ Pα an open dense set, A ∈ [E ∩ α]<ω and K : A −→ ω<ω suitable. If 
p ∈ PK

α , then there is q with the following properties:

(1) q ∈ PK
α

(2) q ≤ p.
(3) If β ∈ A, then q (β) = p (β).
(4) There is an antichain L ∈ [D]<ω such that for every r ≤ q, if r follows K, then r is compatible with an 

element of L.
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Proof. We prove the lemma by induction on α. The case where α = 0 is clear. We will now prove it for 
α + 1.

Case. α /∈ A.

Define D as the set of all q ∈ Pα for which there exists q ∈ Pα+1 with the following properties:

(1) q � α = q.
(2) q ∈ D.
(3) q � “q (α) ≤ p (α) ”.
(4) There is mq ∈ ω such that q � “ len (q (α)) = mq”.
(5) In case α ∈ H ∪E, if q � q (α) =

(
ṡ,mq, Ḟ

)
, then q � “4 

∣∣Ḟ ∣∣ ≤ mq”.

It is easy to see that D is an open dense subset of Pα. By the inductive hypothesis, there is p ≤ p � α as 
in the lemma, let L ∈

[
D
]<ω an antichain such that for every q ≤ p, if q follows K, then q is compatible 

with an element of L. Let L = {qi | i < k} for some k ∈ ω. For every i < k, fix qi ∈ D as in the definition 
of D. Let β0 = min (dom (p)), we now find m ∈ ω such that m > len (p (β0)) as well as m > mqi for every 
i < k. Since L is an antichain, we can find ẋ a Pα-name for an element of Q̇α with the following properties:

(1) qi � “ẋ = qi (α) ” for every i < k.
(2) r � “ẋ = p (α) ” for every r incompatible with every qi.

We now apply Lemma 4.17 to find p1 with the following properties:

(1) p1 ∈ PK
α .

(2) p1 ≤ p.
(3) dom (p1) = dom (p).
(4) If γ ∈ A, then p1(γ) = p̄(γ).
(5) If β ∈ dom (p1) \A, then p1 � β � “ len (p1 (β)) = max {m, len (p (β))} ”.

Let q = p1

ẋ. We claim that q has the desired properties. In order to prove that q ∈ PK

α+1, we only need 
to prove that q has the A-descending condition (the other properties are true by definition). Note that p1
forces that the length of the stem of ẋ is at most m (since p ∈ PK

α+1, then len (p (α)) is forced to be at most 
len (p (β0)), which is smaller than m). Since the length of the stem in all the elements of dom(p1) \A is at 
least m, it follows that q has the A-descending condition. Clearly q ≤ p and if β ∈ A, then q (β) = p (β).

Finally, let L1 = {qi | i < k} ⊆ D and let r ≤ q be a condition following K. We need to prove that r is 
compatible with an element of L1. Since r � α ≤ q � α and it follows K, we know there is qi ∈ L such that 
r � α and qi are compatible. We claim that r and qi are compatible.

Let r1 ∈ Pα be a common extension of both r � α and qi. Define r = r 

1 r (α), we will prove that 

r extends both r and qi. Clearly r ≤ r and in order to show that r ≤ qi, we only need to prove that 
r1 � “r (α) ≤ qi (α) ”. Since r1 ≤ qi, we have that r1 � “ẋ = qi (α) ”. We also know that r � α � “r (α) ≤ ẋ”, 
we conclude that r1 � “r (α) ≤ qi (α) ” and we are done.

Case. α ∈ A (in particular, α ∈ E).

Let s = K (α) and n = |s|. In this way, we have that p � α � “p (α) = (s, n, Ḟ )” for some Ḟ . Let G ⊆ Pα

be a generic filter with p � α ∈ G. In V [G], we define the set D = {ẋ [G] | ∃q ≤ p � α (q ∈ G ∧ q
ẋ ∈ D)}. 
It is easy to see that D is an open dense subset of E�. By the Proposition 4.9, there is Z ∈

[
D
]<ω an 

antichain such that for every x = (s, n, J) ∈ E�, there is z ∈ Z such that x and z are compatible.
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Back in V , define B as the set of all r ∈ Pα with the following properties:

(1) Either r and p � α are incompatible, or
(2) There are k ∈ ω and Y r = {ẋr

i | i < k} such that r � “Ż = {ẋr
i [Ġ] | i < k}” and r
ẋr

i ∈ D for every 
i < k.

It is easy to see that B is an open dense subset of Pα. Let K1 = K � α. We apply the inductive hypothesis 
with p � α, B and K1. In this way, there are q and L with the following properties:

(1) q ≤ p � α.
(2) q ∈ PK1

α .
(3) If β ∈ A \ {α}, then q (β) = p (β).
(4) L ∈ [B]<ω is an antichain.
(5) For every q′ ≤ q, if q′ follows K1, then q1 is compatible with an element of L.

We now define L1 = {r
ẋr
i | r ∈ L ∧ẋr

i ∈ Y r}, note that L1 is a finite antichain of D. Define q = q
p (α), 
we claim that q and L1 have the desired properties. Clearly q ∈ PK

α+1. Now, let q1 ≤ q that follows K. Since 
q1 � α ≤ q � α = q and q1 � α follows K1, we know that there is r ∈ L compatible with q1 � α. Let q2 ≤
q1 � α, r and note that q2 � “Ż = {ẋr

i [Ġ] | i < k}”, hence (without lost of generality), there is i such that 
q2 forces that q1 (α) and ẋr

i are compatible (recall that q1 (α) is forced to be of the form (s, n, J̇) since q1
follows K). It follows that q1 and r
ẋr

i are compatible.
Finally, we consider the case when α is a limit ordinal and the proposition is true for every β < α. This 

case is similar to the one where α /∈ A. We first find β < α such that A, dom (p) ⊆ β. Define D as the set 
of all q ∈ Pβ such that there is q ∈ Pα with the following properties:

(1) q � β = q.
(2) q ∈ D.
(3) If ξ ∈ (dom (q) \ β) ∩ (H ∪E) and q̄ � ξ � q (ξ) = (ż, ṁ, J̇) then q � ξ � “4 

∣∣J̇∣∣ ≤ ṁ”.
(4) q � [β, α) has the decreasing condition.
(5) There is nq such that for every ξ ∈ dom (q) \ β, the condition q � ξ � “ len (q (ξ)) ≤ nq”.

It is easy to see that D is an open dense subset of Pβ (it is dense by Lemma 4.13). By the induction 
hypothesis, there are q ≤ p following K and an antichain L = {qi | i < k} ⊆ D such that for every r ≤ q

that follows K, r is compatible with an element of L. For every i < k, choose qi ∈ D witnessing that qi ∈ D. 
Find n ∈ ω such that n > nqi for every qi ∈ L. By Lemma 4.17, we may assume that all of the stems in 
dom (q) \ A are forced to be larger than n. Let Bi = dom(qi) for every i < k. We now define a condition 
q̂ ∈ Pα with the following properties:

(1) q̂ � β = q.
(2) dom(q̂) = dom (q) ∪

⋃
i<k

Bi

(3) For every i < k and ξ ∈ Bi, we have that qi � ξ � “q̂ (ξ) = qi (ξ) ”.
(4) For every i < k and ξ ∈ α such that ξ /∈ β ∪ Bi, we have that qi � ξ � “q̂ (ξ) = 1Q̇ξ

” (where 1Q̇ξ
is the 

name of the largest condition).
(5) If r ∈ Pβ is incompatible with every qi ∈ L and ξ ∈

⋃
Bi, then r � ξ � “q̂ (ξ) = 1Q̇ξ

”

i<k
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Let L1 = {qi | i < k}, we will show that q̂ and L1 have the desired properties. It is easy to see that 
q̂ ∈ PK

α . Now, let r ≤ q̂ that follows K. Clearly, r � β extends q and follows K, so there is i < k such that 
qi is compatible with r. It is easy to see that r is compatible with qi. �

We can now prove the following:

Proposition 4.19. There is a model of ZFC such that:

(1) c = ω3.
(2) ie = ω2.
(3) There are families {Aγ | γ ∈ ω1}, B = {fα | α ∈ ω2} such that:

(a) Aγ ⊆ [ω]ω is a MAD family of size ω2 (for every γ ∈ ω1).
(b) B ⊆ PFun is a MAD family.
(c) If π : PFun −→ [ω]ω is the function defined by π (f) = dom (f), then π � B : B −→

⋃
γ∈ω1

Aγ is 

bijective.

Proof. We start with a ground model such that V |= c = ω3 and we will force with Pω2 . Let G ⊆ Pω2 be 
a generic filter. It is easy to see that V [G] |= c = ω3. For every γ ∈ ω1, let Aγ =

{
Aα

γ | α ∈ Dγ

}
. We have 

the following:

Claim. Let γ ∈ ω1.

(1) Aγ ⊆ [ω]ω is a MAD family of size ω2.
(2) For every X ∈ V [G], if X ∈ I (Aγ)+, then the set {α ∈ Dγ |

∣∣X ∩Aα
γ

∣∣ = ω} has size ω2.

The claim follows easily by Lemma 4.3. A more interesting fact is the following:

Claim. V [G] |=
⋂

γ∈ω1

I (Aγ) = [ω]<ω.

Let Ẋ be a Pω2 -name for an infinite subset of ω. Let M ∈ V be a countable elementary submodel of
H((2ω3)+) such that Ẋ, Pω2 ∈ M . Choose γ ∈ ω1 \M , we will show that Ẋ is forced to be in I (Aγ)+. In 
fact, we will prove that Ẋ will have infinite intersection with every element of Aγ. Note that Dγ ∩M = ∅
since γ /∈ M (recall that {Dη | η ∈ ω1} ∈ M since Pω2 ∈ M).

Let ξ ∈ Dγ , k ∈ ω and p ∈ Pω2 (in general, p /∈ M). We must find an extension of p forcing that Ẋ and 
Aξ

γ intersect beyond k. We may assume that ξ ∈ dom (p), p is pure and has the descending condition. Let 
n be the height of p. We may also assume that n > k. For technical reasons, assume that 0 ∈ dom (p). Let 
B = dom (p) ∩ M and A = B ∩ E. Note that p ∈ PK

α , where K is the suitable function on A defined by 
“K(α) is the first coordinate of the triple p(α)”. Let dom (p) = {α0, ..., αm} where αi < αj whenever i < j.

Claim. There is p ∈ M ∩ Pω2 such that for every i ≤ m, the following holds:

(1) p is pure of height n.
(2) dom (p) = {δ0, ..., δm} (where δi < δj whenever i < j) and B ⊆ dom (p).
(3) p ∈ PK

ω2
.

(4) If αi ∈ B, then δi = αi.
(5) If αi /∈ B, then δi < αi.
(6) αi ∈ E if and only if δi ∈ E.
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(7) αi ∈ H if and only if δi ∈ H.
(8) For every η ∈ M ∩ ω1, if αi ∈ Dη then δi ∈ Dη.
(9) For every j ≤ m, if αi, αj ∈

⋃
η∈ω1

Dη then αi, αj are in the same element of the partition if and only if 

δi, δj are in the same element of the partition.
(10) If αi ∈ H, then the following holds:

(a) If p (αi) =
(
sαi

, n, {ḟμ : μ ∈ Jp
αi
}
)
, then p (δi) =

(
sαi

, n, {ḟμ : μ ∈ Jp
δi
}
)

(i.e. the stem of p (αi)
and p (δi) is the same).

(b) For every j < i, we have that αj ∈ Jp
αi

if and only if δj ∈ Jp
δi

.

(11) If αi ∈ Dη for some η < ω1, then the following holds:

(a) If p � αi � “p (αi) =
(
sαi

, {Ȧμ
η : μ ∈ Jp

αi
}
)
”, then p � δi � “p (δi) =

(
sαi

, {Ȧμ
η : μ ∈ Jp

δi
}
)

” (i.e. 
the stem of p (αi) and p (δi) is the same).

(b) For every j < i, we have that αj ∈ Jp
αi

if and only if δj ∈ Jp
δi

(where αi ∈ Dη and δi ∈ Dη′).

(12) If αi ∈ E, then the following holds:

(a) If p (αi) =
(
sαi

,mαi
, Jp

αi

)
, then p (δi) =

(
sαi

mαi
, Jp

δi

)
(i.e. the stems of p (αi) and p (δi) are the 

same).
(b) If αi ∈ M , then Jp

αi
∩M = Jp

δi
∩M (recall that in this case, αi = δi).

The claim is almost an immediate consequence of the elementarity of M , point 5 is the only one that 
requires us being slightly more careful. For every αi /∈ B, we define the following:

(1) ξ0
i = max (B) ∩ αi (this is well defined since 0 ∈ B).

(2) ξ1
i = min (M ∩ (ω2 + 1) \ αi).

Note that ξ0
i , ξ

1
i ∈ M and ξ0

i < αi < ξ1
i . The claim then follows by applying elementarity and requiring 

that ξ0
i < δi < ξ1

i . Since δi ∈ M and is smaller that ξ1
i , it follows that δi < αi.

Let p be as in the claim. We now define

D =
{
r ∈ Pω2 | ∃lr ∈ ω

(
r � “lr = min

(
Ẋ \ n

)
”
)}

.

Clearly D ⊆ Pω2 is an open dense subset and D ∈ M . Since p ∈ PK
ω2

, applying Lemma 4.18, there is q ≤ p

as in the lemma. We may even assume that q ∈ M . Note that in general, q might not be pure (we could 
extend it to a pure condition, but it might not follow K anymore). Let L ∈ [D]<ω such that for every r ≤ q, 
if r follows K, then r is compatible with an element of L. Let Z = {lr | r ∈ L} and note that Z ∩ n = ∅. It 
is clear that if r ∈ L, then r � “Z ∩ Ẋ �= ∅”. Let n1 = max (Z) + 1.

We now define the condition pZ with the following properties:

(1) dom (pZ) = dom (p).
(2) For every η ∈ dom (pZ), the following holds:

(a) If η /∈ Dγ , then pZ (η) = p (η).
(b) Let η ∈ Dγ with η �= ξ. If p (η) =

(
spη, {Ȧμ

γ : μ ∈ Jp
η}

)
define spZ

η : n1 −→ 2 such that spη ⊆ spZ
η and 

spZ
η (i) = 0 for every i ∈ [n, n1). Let pZ (η) =

(
spZ
η , {Ȧμ

γ : μ ∈ Jp
η}

)
.
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(c) If p (ξ) =
(
spξ , {Ȧμ

γ : μ ∈ Jp
ξ }

)
define spZ

ξ : n1 −→ 2 such that spξ ⊆ spZ

ξ and spZ

ξ (i) = 1 for every 

i ∈ [n, n1). Let pZ (ξ) =
(
spZ

ξ , {Ȧμ
γ : μ ∈ Jp

ξ }
)
.

Note that pZ � “Z ⊆ Aξ
γ”. Since Jp

ξ ⊆ dom(p � ξ), it is follows from (b) that pZ ≤ p. We now define the 
condition r as follows:

(1) dom (r) = dom (pZ) ∪ dom (q).
(2) If η ∈ dom (q) \ dom (pZ), then r (η) = q (η).
(3) Let η ∈ dom (pZ), so η = αi for some i ≤ m. We have the following:

(a) Assume αi ∈ Dγ′ with γ′ /∈ M (so η /∈ dom (q)), define r (αi) = pZ (αi) (note that this will be the 
case when γ′ = γ).

(b) Assume αi ∈ Dγ′ with γ′ ∈ M . Let pZ (αi) =
(
spZ
αi

, {Ȧμ
γ′ : μ ∈ JpZ

αi
}
)

and q � δi � q (δi) =(
ṫqδi , {Ȧ

μ
γ′ : μ ∈ J̇q

δi
}
)

(since q is not pure, ṫqδi and J̇q
δi

might be names and not actual objects). 

Define r (αi) =
(
ṫqδi , {Ȧ

μ
γ′ : μ ∈ JpZ

αi
∪ J̇q

δi
}
)
. In here, note that ṫqδi is a Pδi -name, since δi ≤ αi it is 

also a Pαi
-name, so the definition at least makes sense.

(c) Assume αi ∈ H. Let pZ (αi) =
(
spZ
αi

, n, {ḟμ : μ ∈ JpZ
αi

}
)
, q (δi) =

(
ṫqδi , ṁ

q
δi
, {ḟμ : μ ∈ J̇q

δi
}
)
, and 

r (αi) =
(
ṫqδi , ṁ

q
δi
, {ḟμ : μ ∈ J̇q

δi
∪ JpZ

αi
}
)
.

(d) Assume αi ∈ E and αi /∈ dom (q). Define r (αi) = pZ (αi).
(e) Assume αi ∈ E and αi ∈ dom (q) (so δi = αi and αi ∈ A). Let pZ (αi) =

(
spZ
αi

, n, J̇pZ
αi

)
and note 

that in here we have that q (δi) =
(
spZ
αi

, n, J̇q
δi

)
(this is because αi ∈ A, so q (δi) = p (δi)). Define 

r (δi) =
(
spZ
αi

, n, J̇q
δi
∪ J̇pZ

αi

)
.

A key remark is that in r, we do mot change the stem of the coordinates that are in E. It might not be 
immediately obvious that r is a condition, since the “size requirement” may fail in the coordinates of E or 
H. We will show that this is not the case.

Claim. Let η ∈ dom (r).

(1) r � η ∈ Pη.
(2) r � η � “r (η) ∈ Q̇η”.
(3) r � η ≤ q � η.
(4) r � η � “r (η) ≤ q (η) ”.

We will prove the claim. Note that points 3 and 4 are trivial once we know that r � η is a condition. We 
proceed by induction, it is enough to show that if r � η ∈ Pη and r � η ≤ q � η, then r � η � “r (η) ∈ Q̇η”. 
Furthermore, this is clear whenever η ∈ dom (q) \ dom (pZ), η /∈ H ∪E or η ∈ E \ dom (q). We focus on the 
other cases. From now on, η ∈ dom (pZ), so we may assume that η = αi for some i ≤ m.

Case. αi ∈ H.

In here, pZ (αi) =
(
spαi

, n, {ḟμ : μ ∈ Jp
αi
}
)
, q (δi) =

(
ṫqδi , ṁ

q
δi
, {ḟμ : μ ∈ J̇q

δi
}
)
, and r (αi) = (ṫqδi , ṁ

q
δi
, {ḟμ :

μ ∈ J̇q
δi

∪ Jp
αi
}). As p (δi) =

(
spαi

, n, {ḟμ : μ ∈ J p̄
δi
}
)

and since q ≤ p, we get that q � δi � “n ≤ ṁq
δi

”. 
Furthermore, q � δi � “4 

∣∣J̇q
δi

∣∣ ≤ ṁq
δi

”. We also know that 4 
∣∣Jp

αi

∣∣ ≤ n, (since p is pure), hence q � δi �Pδi

“4 
∣∣J̇q

δi

∣∣ , 4 
∣∣JpZ

αi

∣∣ ≤ ṁq
δi

”. Since r � αi ≤ r � δi ≤ q � δi, Pδi is completely embedded into Pαi
and the formula 

is absolute for transitive models of ZFC, we get that r � αi �Pαi
“4 

∣∣J̇q
δi

∣∣ , 4 
∣∣JpZ

αi

∣∣ ≤ ṁq
δi

”, so r (α) is forced 
to be a condition by Lemma 4.7.
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Case. αi ∈ dom q ∩ E.

In here, pZ (αi) =
(
spαi

,mαi
, J̇p

αi

)
, q (αi) = p(αi) =

(
spαi

,mαi
, J̇q

αi

)
and r(αi) =

(
spαi

,mαi
, J̇q

αi
∪ J̇p

αi

)
. 

Clearly, r � αi � 4 
∣∣J̇q

αi

∣∣ , 4 
∣∣J̇p

αi

∣∣ ≤ mα since any condition forces this statement, so r (α) is forced to be a 
condition by Lemma 4.7.

We now know that r is indeed a condition and that r ≤ q. Note that r follows K.
We will now prove that r ≤ pZ . Let αi ∈ dom (pZ), assume that we know that r � αi ≤ pZ � αi, we will 

prove that r � αi � “r (αi) < pZ (αi) ”. We proceed by cases:

Case. αi ∈ Dγ′ with γ′ /∈ M .

This case is immediate by the definition.

Case. αi ∈ Dγ′ with γ′ ∈ M and αi ∈ dom (q) (hence δi = αi).

In here, we have that

pZ (αi) =
(
spZ
αi

, {Ȧμ
γ′ : μ ∈ JpZ

αi
}
)
, q (αi) =

(
ṫqαi

, {Ȧμ
γ′ : μ ∈ J̇q

αi
}
)

and r (αi) =
(
ṫqαi

, {Ȧμ
γ′ : μ ∈ JpZ

αi
∪ J̇q

αi
}
)
. Since r ≤ q, we have that r ≤ p, so r � αi � “spZ

αi
⊆ ṫqαi

” (in this 
case, sp̄αi

= spαi
= spZ

αi
).

Now, let αj ∈ JpZ
αi

(recall that the stem of r (αj) is ṫqαj
). We need to prove that r � αi � “

(
ṫqαi

)−1 (1) ∩
A

αj

γ′ ⊆ n”. Let ṁαi
, ṁαj

such that q � αi � “ṫqαi
: ṁαi

−→ 2” and q � αj � “ṫqαj
: ṁαj

−→ 2”. Since q satisfies 

the A-descending condition, we know that q � αi � “ṁαj
≥ ṁαi

”. Since q � αj � “Aαj

γ′ ∩ṁαj
=

(
ṫqαj

)−1
(1) ”, 

we get that q � αi � “Aαj

γ′ ∩ ṁαi
=

(
ṫqαj

)−1
(1) ∩ ṁαi

”. Since r ≤ p, we know that r � “Aαi

γ′ ∩ A
αj

γ′ ⊆ n”. 

In particular, ṫqαi
is forced to be disjoint with Ȧαj

γ′ \ n, so we get that r � “
(
ṫqαi

)−1 (1) ∩
(
ṫqαj

)−1
(1) ⊆ n”, 

hence r � αi � “
(
ṫqαi

)−1 (1) ∩A
αj

γ′ ⊆ n”, which is what we wanted to prove.

Case. αi ∈ Dγ′ with γ′ ∈ M and αi /∈ dom (q) (so δi < αi).

Here we have pZ (αi) =
(
spZ
αi

, {Ȧμ
γ : μ ∈ JpZ

αi
}
)
, q (δi) =

(
ṫqδi , {A

μ
γ′ : μ ∈ J̇q

δi
}
)

and r (αi) = (ṫqδi , {A
μ
γ′ : μ ∈

J̇q
δi
∪ Jpz

αi
}). Since r ≤ q, we have that r ≤ p, so r � δi � “spZ

αi
⊆ ṫqδi” (recall that spZ

αi
is the stem of p (δi)).

Now, let αj ∈ JpZ
αi

(recall that the stem of r (αj) is ṫqδj ). We need to prove that r � αi � “
(
ṫqδi

)−1 (1)∩Aαj

γ′ ⊆
n”. Let ṁδi , ṁδj such that q � δi � “ṫqδi : ṁδi −→ 2” and q � δj � “ṫqδj : ṁδj −→ 2”. Since q satisfies the 

domK-descending condition, we know that q � δi � “ṁδj ≥ ṁδi”. Since q � δj � “Aδj
γ′ ∩ ṁδj =

(
ṫqδj

)−1
(1) ”, 

we get that q � δi � “Aδj
γ′ ∩ ṁδi =

(
ṫqδj

)−1
(1) ∩ ṁδi”. Since r ≤ p, we know that r � “Aδi

γ′ ∩ A
δj
γ′ ⊆ n”. In 

particular, ṫqδi is forced to be disjoint with Ȧδj
γ′ \n, so we get that r � “

(
ṫqαi

)−1 (1)∩
(
ṫqδj

)−1
(1) ⊆ n”, hence 

r � αi � “
(
ṫqδi

)−1 (1) ∩A
αj

γ′ ⊆ n”, which is what we wanted to prove.

Case. αi ∈ H and αi ∈ dom (q) (so αi = δi).

Here pZ (αi) =
(
spZ
αi

, n, {ḟμ : μ ∈ JpZ
αi

}
)
, q (δi) =

(
ṫqδi , ṁ

q
δi
, {ḟμ : μ ∈ J̇q

δi
}
)

and r (αi) = (ṫqδi , ṁ
q
δi
, {ḟμ : μ ∈

J̇q ∪ JpZ
α }). Since r ≤ q, we have that r ≤ p, so r � αi � “spZ

α ⊆ ṫq ”.
δi i i δi
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Now, let αj ∈ JpZ
αi

(recall that the stem of r (αj) is ṫqδj ). We need to prove that r � αi � “ṫqδi∩ ḟαj
⊆ n ×n”. 

Since q satisfies the domK-descending condition, we know that q � δi � “ṁδj ≥ ṁδi”. Since q � αj � “ḟαj
�

ṁδj = ṫqδj”, we get that q � δi � “ḟαj
� ṁδi = ṫqδj”. Since r ≤ p, we know that r � “ḟαi

∩ ḟδj ⊆ n × n”. 
In particular, ṫqδi is forced to be disjoint with ḟαj

above n, so we get that r � “ṫqδi ∩ ṫqδj ⊆ n × n”, hence 

r � αi � “ṫqδi ∩ ḟαj
⊆ n × n”, which is what we wanted to prove.

Case. αi ∈ H and αi /∈ dom (q) (so δi < αi).

Here pZ (αi) =
(
spZ
αi

, n, {ḟμ : μ ∈ JpZ
αi

}
)
, q (δi) =

(
ṫqδi , ṁ

q
δi
, {ḟμ : μ ∈ J̇q

δi
}
)

and r (αi) = (ṫqδi , ṁ
q
δi
, {ḟμ : μ ∈

J̇q
δi
∪ JpZ

αi
}). Since r ≤ q, we have that r ≤ p, so r � δi � “spZ

αi
⊆ ṫqδi” (recall that spZ

αi
is the stem of p (δi)).

Now, let αj ∈ JpZ
αi

(recall that the stem of r (αj) is ṫqδj ). We need to prove that r � αi � “ṫqαi
∩ḟαj

⊆ n ×n”. 
Since q satisfies the descending condition, we know that q � δi � “ṁδj ≥ ṁδi”. Since q � αj � “ḟαj

� ṁδj =
ṫqδj”, we get that q � αi � “ḟαj

� ṁδi = ṫqδj”. Since r ≤ p, we know that r � “ḟαi
∩ ḟδj ⊆ n × n”. In 

particular, ṫqδi is forced to be disjoint with ḟαj
above n, so we get that r � “ṫqδi ∩ ṫqδj ⊆ n × n”, hence 

r � αi � “ṫqδi ∩ ḟαj
⊆ n × n”, which is what we wanted to prove.

Case. αi ∈ E and αi /∈ dom (q).

This case is immediate from the definition.

Case. αi ∈ E and αi ∈ dom (q) (so δi = αi and αi ∈ A).

This case is also immediate from the definition.
Having dealt with all the cases, we can finally conclude that r ≤ q, pZ . Since r follows K and r ≤ q, there 

is r′ ∈ L such that r′ and r are compatible. Let r be a common extension. Then:

(1) r � “Ẋ ∩ Z �= ∅”.
(2) r � “Z ⊆ Ȧξ

γ” (since r ≤ pZ).

Hence r � “Ȧξ
γ ∩ Ẋ � k”, which is what we wanted to prove. We conclude that V [G] |=

⋂
γ∈ω1

I (Aγ) =

[ω]<ω.
Recall, that B = {fα | α ∈ H}.

Claim. B is a MAD family of size ω2.

It is easy to see that B is an almost disjoint family of size ω2, it remains to prove that it is maximal. Let 
h ∈ PFun and A = dom (h). By the last claim, there is γ ∈ ω1 such that A ∈ I (Aγ)+. In this way, we can 
find β ∈ Dγ such that C = A ∩Aβ

γ is infinite and h ∈ V [Gβ ], define h1 = h � C and note that h1 ∈ V [Gβ+1]. 
Let α = R (β) (so β < α). First consider the case where h1 ∈ I (Bα). Then there are α1, ..., αn ∈ H such 
that h1 ⊆ fα1 ∪ ... ∪ fαn

, so clearly h1 has infinite intersection with an fαi
. In case h1 ∈ I (Bα)+, we will 

have that fα ∩ h1 is infinite by 4.6.
Finally, we will prove the following:

Claim. ie = ω2.

On the one hand, since B is MAD, we get that ie ≤ ω2. On the other hand, since we are forcing with E�
cofinally many times, we get that ω2 ≤ ie. We conclude that ie = ω2 holds in our model. �
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